Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 68(47): 13620-13631, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33140972

RESUMO

Although solid-phase activation of lignite using a nanocatalyst has great potential in producing low-cost and sustainable humic acid, the large-scale application of this technology still faces challenges because of the high price and toxicity of the nanocatalyst. Additionally, the specific molecular components of humic acid in activated lignite remain unknown. In this work, a multifunctional molybdate-phosphorus hierarchical hollow nanosphere (Mo-P-HH) catalyst was successfully manufactured by a simple way followed by phosphorization. In comparison with a commercial Pd/C catalyst, the multifunctional Mo-P-HH catalyst was more effective in producing water-soluble humic acid with small molecular functional groups from lignite via solid-phase activation. Moreover, Fourier transform ion cyclotron resonance mass spectrometry revealed the molecular compositions of humic acid in activated lignite. Compared with that from raw lignite, the humic acid after Mo-P-HH activation had less aromatic structure but higher content of lipids, proteins, amino sugar, and carbohydrates. In addition, the activated humic acid simulated seed germination and seedling growth. Therefore, this study provided a high-performance hierarchical hollow nanocatalyst for activation of humic acid and also offered the theoretical basis for the application of humic acid in agriculture.


Assuntos
Nanosferas , Oryza , Carvão Mineral , Germinação , Substâncias Húmicas/análise , Molibdênio , Fósforo , Sementes/química
2.
J Agric Food Chem ; 67(47): 12987-13000, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31682431

RESUMO

The complex synthesis process, low utilization, and single function of fungicides have seriously hindered the development of fungicides in resistance to rice sheath blight. Here, an inexpensive and multifunctional Cu(II)-based water-dispersible humic acid (Cu-WH) fungicide with growth-promoting ability was developed with a simple method. A 3D molybdate carbon hierarchical nanosphere (MoO2-C-HN) catalyst was successfully synthesized using a green route and applied in a solid-phase activation of lignite to obtain water-dispersible humic acid. Cu(II)-based water-dispersible humic acid (Cu-WH) was then formed through a simple reaction of Cu(II) and the humic acid. The resultant Cu-WH showed strong antifungal performance against Rhizoctonia solani in laboratory incubation experiments. After being treated with Cu3-WH (0.1 mg L-1), the control efficiency of rice sheath blight at 1, 3, and 5 days after infection was 90.54%, 78.96%, and 66.31%, respectively. It also enhanced the water-holding capacity of the substrate and thus effectively improved the growth of rice seedlings. In comparison to commercial rice seedling substrate, the substrate treated with 8 wt % of Cu3-WH increased plant height, stem diameter, fresh weight, and chlorophyll content by 19.23%, 35.91%, 14.52%, and 42.85%, respectively. The newly developed Cu-WH thus can be used as a novel low-cost efficient fungicide and growth stimulator to treat rice sheath blight as well as to increase rice production.


Assuntos
Cobre/química , Cobre/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Substâncias Húmicas/análise , Oryza/crescimento & desenvolvimento , Antifúngicos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento
3.
Environ Sci Technol ; 53(24): 14752-14760, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747513

RESUMO

The treatment of spent cooking liquor is critical for clean production of pulp and paper industry. There is a compelling need to develop a cost-effective and green technology for reuse of organic matter in spent cooking liquor to mitigate the negative impacts on the environment. The objective of this study is to examine the chemical structure of fulvic acid-like substances extracted from spent cooking liquor (PFA) and their relationship with bioactivity in plant growth. Compared with the benchmark Pahokee peat fulvic acid (PPFA), PFA has less aromatic structure, but higher content of lignin, carbohydrates, and amino acid. After fractionation, protein/amino proportion decreased with increasing molecular weight, but the aromaticity increased. Under salt stress, rice seedling growth was promoted by PFA with low molecular weight (<5 kDa), but inhibited by fraction with high molecular weight (>10 kDa). Principal component analysis suggested that promoted growth was more related with chemical structure (O- and N-alkyl moieties) than with molecular weight. This study provided the theoretical basis for development of an innovative green technology of sustainable reuse of spent cooking liquor in agriculture.


Assuntos
Benzopiranos , Lignina , Carboidratos , Culinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...